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Abstract

This supplementary material has the following contents.

1. Sec. A presents the implementation details, including
the derivation of transformation matrices (Sec. A.1),
the computation of blend weights and UV coordinates
(Sec. A.2), network architectures (Sec. A.3), hyperpa-
rameters (Sec. A.4), loss terms (Sec. A.5), and the body
decomposition (Sec. A.6).

2. Sec. B describes the details of evaluation and experi-
ments.

3. Sec. C presents the details of baseline methods.

4. Sec. D shows additional experimental results and abla-
tion studies.

A. Implementation details

A.1. Derivation of transformation matrices

Assuming there are K human bones, [5] defines the hu-
man skeleton as (J, θ), in which bone position is repre-
sented by J ∈ R3×K and bone rotation is represented by
θ ∈ R3×(K+1) = [ωT

0 , ω
T
1 , · · · , ωT

K ]. Given the target pose
θt, the transformation Gk of the k-th bone is formulated as:

Gk = Ak(J, θt)Ak(J, θc)
−1, (1)

Ak(J, θ) =
∏

i∈P (k)

[
R(ωi) ji

0 1

]
, (2)

where θc is the canonical pose, R(ωi) ∈ R3×3 denotes the
rotation matrix of ωi, ji denotes the i-th joint location, and
P (k) denotes the ordered set of parent joints of joint k.

*Equal contribution

A.2. Computation of blend weights and UV coordi-
nates

For a query point x, we compute its blend weights and UV
coordinates from the SMPL model as follows. First, we find
the nearest surface point on the SMPL mesh. Then, the cor-
responding mesh facet gives three mesh vertices. The blend
weights and UV coordinates of mesh vertices are pre-defined
by the SMPL model. Finally, we perform barycentric inter-
polation to compute the blend weights and UV coordinates
of the query point.

A.3. Network architectures

Figure 1a and 1b illustrate the network architecture of the
residual deformation module and our proposed part repre-
sentation.

For the residual deformation module, we use an MLP
with 3 layers of width 32 and Softplus activation for the 2
hidden layers. We apply tanh on the deformation output.
The residual deformation module takes as input the MHE-
encoded (u, v, t) coordinates, and outputs 3D translational
vectors.

For the canonical human model, we use an MHE-
augmented NeRF network for every part of our part rep-
resentation. The NeRF network of each part is comprised
of two MLPs, with 2 and 3 layers of width 64 respectively
for volume density and color. Specifically, MHE-encoded
(x, y, z) coordinates in canonical space are first fed into the
first MLP to output a 16D geometric feature z, which is
concatenated with positional encoded [6] canonical view
direction, z and an 8D time-varying latent code [9]. Then,
the concatenated vector is passed into the second MLP. We
apply Softplus activation on all hidden layers of the two
MLPs and a Sigmoid activation for the 3D color output. Fol-
lowing [8], the first MLP outputs occupancy directly instead
of volume density, and we later use the occupancy as the
alpha value during volume rendering. The occupancy out-
put h is activated using o = 1− e−softplus(h). The volume
rendering process is implemented using alpha composition
following [8].

Both of the previous two modules use the same MHE
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(a) NeRF Network architecture for residual deforma-
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(b) NeRF Network architecture for every part of the canonical human MLPσk and MLPck .

Body Head Left Arm Right Arm Leg
Number of Levels 16 16 16 16 16
Hash Table Size 220 218 215 215 220

Feature Dimension 16 16 16 16 16
Coarsest Resolution 16 2 2 2 2
Finest Resolution 2768 346 346 346 346

Table 1. Hyperparameters for Multiresolution Hash Table of Canonical Part Representation.

implementation. We follow [7] to use two separate arrays to
store encodings of lower resolution dense grid and another
array for the bigger arrays requiring hash encodings, as well
as the indexing and spacial hashing algorithm. We choose
19349663, 83492791 as the two primes π2, π3 described in
[7]. We concatenate the hash-encoded coordinates with the
original coordinates as input to the next module. The detailed
parameters of the MHE for different parts of the canonical
human body and the residual deformation will be explained
in A.4.

A.4. Hyperparameters

For the part-based representation of the canonical human
model, the default configuration of multi-resolution hash
encoding shared by all experiments is shown in Table 1. We
then sum the features from all levels and feed them into the
MLP shown in Figure 1b to get density and color.

UVT-Deformation
Number of Levels 8
Hash Table Size 214

Feature Dimension 2
Coarsest Resolution 4
Finest Resolution 53

Table 2. Hyperparameters for Multiresolution Hash Table for UVT-
Deformation Field.

For the motion field, the configuration of (u, v, t)-based
multi-resolution hash encoding shared by all experiments is
shown in Table 2. The features are then concatenated and fed
into MLP shown in Figure 1a to get the non-rigid residual
output.

A.5. Loss terms

In addition to the rendering loss Lrgb, we introduce a
loss Ldist to enforce the density field to concatenate on the
surface [1], and two losses Lres and Lsmooth to ensure the
predicted residual deformations are small and smooth. The
regularization Ldist on the density field [1] is defined as:

Ldist =
∑
i,j

wiwj |
zi + zi+1

2
− zj + zj+1

2
|, (3)

where wi means the weight of i-th sampled point on each
ray and zi means the depth of this point. The regularization
terms Lres and Lsmooth on the residual deformation field are
defined as:

Lres = ||MLPres(ψres(uk, vk, t))||2, (4)

Lsmooth = ||MLPres(ψres(u
′
k, v

′
k, t))−MLPres(ψres(u

′′
k , v

′′
k , t))||2,

(5)



where (u′k, v
′
k) denotes the UV coordinate of sampled point

x′, and u′′k , v
′′
k are derived from points x′′ sampled within a

0.01 radius of x′.
The total loss for training is defined as:

L = λ1Lrgb + λ2Lres + λ3Ldist + λ4Lsmooth. (6)

In all experiments, we choose λ1 = 1, λ2 = 0.1, λ3 = 0.1,
and λ4 = 1.0× 10−4.

A.6. Body decomposition

We use the blend weights of SMPL model [5] to decom-
pose the parametric model into multiple parts. For each mesh
vertex, we first find the bone that has the biggest blend weight
and then convert the corresponding bone to the part using
Table 3.

body 0, 3, 6, 9, 13, 14
leg 1, 2, 4, 5, 7, 8, 10, 11
head 12, 15
left arm 16, 18, 20, 22
right arm 17, 19, 21, 23

Table 3. Conversion from bones to parts.

The decomposed human body is shown in Fig. 2.

Figure 2. The part decomposition of canonical human pose.

A.7. Other implementation details

The whole framework is written in PyTorch, and no cus-
tomized CUDA kernel is written for a fair comparison. We
use PyTorch3D [12] framework to find the closest point on
the part from sampled points.

When sampling patches, we use provided human segmen-
tation mask to guide the sampling to ensure most of the
patches present information about the performer.

To predict the density and color of a query point x, we
first find the nearest surface point pk on each human part.
When the distance dk = ∥x−pk∥ is bigger than a threshold
τ , we simply set the density σk and color ck as zero for the
k-th part. Otherwise, we pass the query point through the
networks to regress the density and color. In all experiments,
we set τ as 0.1.

B. Datasets and metrics
ZJU-MoCap This dataset is a public dataset for non-
commercial research purposes. Any other use is prohibited.
One need to sign an agreement to use this dataset. We choose
377, 386, 387, 392, 393 and 394 for evaluation. 313 and 315
are not chosen because they only show one side of human
body in video from only single view. All sequences use cam-
era id 4 for input. We use 100 frames for training and sample
1 frame every 5 frames.

MonoCap This dataset consists of two videos ”Lan” and
”Marc” from DeepCap dataset [3] and two videos ”Olek”
and ”Vlad” in DynaCap [2]. The detailed configuration for
this dataset and ZJU-MoCap is shown in Table 4.

The DeepCap dataset [3] and DynaCap dataset [2] are
only granted for non-commercial academic purposes. They
prohibit the redistribution of that data. The users should also
sign a license.

Note that both the ZJU-Mocap and MonoCap datasets
do not contain any personally identifiable information or
offensive content.

Metrics For each data, we evaluate PSNR, SSIM and
LPIPS∗ to compare our method and baselines. We compute
the metrics by comparing the whole rendered image and
the ground-truth image. The SSIM metric is evaluated using
Scikit-image [13], and LPIPS metric is evaluated using [16].
We report LPIPS∗ for more clear comparison and LPIPS∗ =
LPIPS ×103.

C. Details of baselines
Neural Body [11], Ani-SDF [10], HumanNeRF [14] and
Ani-NeRF [9] We use the released code and conduct ex-
periments on a single NVIDIA RTX 3090 GPU.

Neural Human Performer [4] and PixelNeRF [15] We
use the released code for evaluation. The evaluation of these
two generalizable methods is split into two stages: pretrain-
ing and finetuning. For pretraining, we conduct the training
on the different datasets, as described in the main paper. We
use all possible views and frames in the dataset for train-
ing and select one random view as a reference view. The
whole pretrain stage lasts for about 10 hours to converge.
For finetuning, we finetune the model on provided training
views. Specifically, as the experiments conducted in the pa-
per only provide one single view, thus these models can only
be trained on this single view for fair comparison. They are
also trained and finetuned on a single NVIDIA RTX 3090
GPU.

We provide the results of these two methods without
finetuning on ”377” sequence in Table 5



Training
Views

Test
Views

Start
Frame

End
Frame

Frame
Interval

ZJU-MoCap “4” Remaining 0 500 5
MonoCap - Lan “0” Remaining 620 1120 5
MonoCap - Marc “0” Remaining 35000 35500 5

MonoCap - Olek “44”
“0”, “5”, “10”, “15”, “20”,
“25”, “30”, “35”, “40”, “45”, “49” 12300 12800 5

MonoCap - Vlad “66”
“0”, “10”, “20”, “30”, “40”,
“50”, “60”, “70”, “80”, “90”, “100” 15275 15775 5

Table 4. Training and test data of ZJU-MoCap and MonoCap datasets.

PSNR SSIM LPIPS*
NHP [4]

(No Finetuning) 24.22 0.946 60.9

PixelNeRF [15]
(No Finetuning) 23.28 0.898 121.3

Table 5. Result of two generalizable baselines without finetuning,
on ”377” dataset

D. Experiments

D.1. Supplementary results

We provide complete quantitative comparison results of
ZJU-MoCap and MonoCap in Table 6 and Table 7 respec-
tively.

We provide more qualitative results in the supplementary
video.

D.2. Ablation on training views

Most view synthesis methods give better results when
they are provided more input information. In this section, we
present the comparison of our method and baseline methods
when there are 4 views provided for training. We use the
”377” sequence from ZJU-MoCap to conduct experiments.
We choose ”0”, ”6”, ”12” and ”18” views for training and
remaining views for testing.

The results is shown in Table 8. Most methods behave
higher performance when the number of input views in-
creases. However, our method still show competitive re-
sult using a significantly faster training speed. Our method
converges slightly slower when we have more input views,
as more information is given and need to be fitted. Neural
Body’s performance gets better, however their convergence
speed is much slower than ours.

For generalizable methods, their performance improves
significantly compared to single view input, as they can have
more information to interpolate between views. However,
their rendering quality is still much lower than ours, as shown
in Fig. 3.

D.3. Ablation on the number of parts

To analyze the impact of the number of human parts,
we conduct experiments on ”377” sequence to compare our
method and another two variants of our method, one have
fewer parts than ours and one have more parts. The detailed
configuration for these two variants can be found in Table 9
and Table 10. They are both trained for the same amount of
time and we keep their model size approximately the same.
We find that these two variants both show lower performance,
compared to ours. The quantitative results are shown in Table
11.

D.4. Ablation on the method used for aggregation

In addition, to perform the max pooling among predic-
tions of human parts, we also tried other strategies for ag-
gregation, including direct averaging, using the inverse of
distance to this part to do a weighted sum, and using the
closest part. We find that these aggregation strategies do not
perform better than the max pooling, as shown in Table 12.

D.5. Ablation on the model size

We try to reduce our model’s size to a smaller size by
decreasing the size of the hash table, and the resulting model
has a model size of 13.4M. After training on the ”377”
dataset for 5 minutes given monocular input, we find it still
shows a PSNR/SSIM/LPIPS∗ = 31.13/0.98/31.91, which is
still competitive compared to the baseline methods.

D.6. Ablation on the number of frames

The number of frames chosen for training also will affect
the training effect. If the number of frames is too small,
then the model cannot get enough information to reconstruct
the human model. If we have too many frames for training,
there would be more information to be fitted. We conduct
experiments on the different choices of training frames by
alternating the frame interval of the ”377” sequence. We
choose the same frames as previous experiments for testing.
We find that increasing or decreasing the frame count will
affect the training greatly. The results can be found in Table
13.



ZJU-MoCap
377 386

Methods Training time PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓
Ours ∼5 minutes 31.36 0.979 26.03 33.53 0.977 33.02

HumanNeRF ∼10 hours 31.12 0.977 22.80 33.31 0.973 33.48
AS ∼10 hours 31.22 0.983 26.20 33.18 0.981 33.85
NB ∼10 hours 29.50 0.970 28.32 31.05 0.970 39.87
AN ∼10 hours 29.91 0.971 32.89 31.69 0.970 44.45

NHP ∼10 hours pre-training, ∼1 hour fine-tuning 27.67 0.957 60.08 30.62 0.965 55.81
PixelNeRF ∼10 hours pre-training, ∼1 hour fine-tuning 23.94 0.899 112.83 27.10 0.921 99.42

387 392
Methods Training time PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓

Ours ∼5 minutes 28.11 0.963 46.96 32.03 0.973 39.30
HumanNeRF ∼10 hours 28.27 0.962 38.89 31.34 0.971 33.57

AS ∼10 hours 27.43 0.968 43.84 30.96 0.976 40.31
NB ∼10 hours 27.14 0.955 47.63 28.38 0.965 44.35
AN ∼10 hours 27.03 0.957 54.01 31.18 0.968 47.65

NHP ∼10 hours pre-training, ∼1 hour fine-tuning 26.23 0.952 69.99 29.30 0.956 66.63
PixelNeRF ∼10 hours pre-training, ∼1 hour fine-tuning 24.37 0.889 121.36 24.69 0.886 126.65

393 394
Methods Training time PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓

Ours ∼5 minutes 29.55 0.964 46.29 31.46 0.969 39.10
HumanNeRF ∼10 hours 29.19 0.964 36.88 30.74 0.966 34.67

AS ∼10 hours 29.00 0.970 42.07 30.50 0.973 37.10
NB ∼10 hours 28.38 0.958 49.55 29.73 0.963 45.11
AN ∼10 hours 28.55 0.959 52.86 30.28 0.964 49.47

NHP ∼10 hours pre-training, ∼1 hour fine-tuning 27.13 0.949 70.47 28.53 0.951 65.65
PixelNeRF ∼10 hours pre-training, ∼1 hour fine-tuning 23.63 0.873 138.86 24.53 0.881 132.03

Table 6. Full quantitative comparison results on ZJU-MoCap.

MonoCap
Lan Marc

Methods Training time PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓
Ours ∼5 minutes 32.78 0.987 17.13 33.84 0.989 16.92

HumanNeRF ∼10 hours 33.50 0.989 13.40 34.66 0.990 16.47
AS ∼10 hours 32.84 0.989 10.56 34.13 0.990 14.01
NB ∼10 hours 33.05 0.987 16.36 34.68 0.988 17.52
AN ∼10 hours 31.40 0.986 18.25 30.81 0.983 24.16

NHP ∼10 hours pre-training, ∼1 hour fine-tuning 29.42 0.975 31.74 30.56 0.972 39.98
PixelNeRF ∼10 hours pre-training, ∼1 hour fine-tuning 26.75 0.956 48.05 28.25 0.964 43.58

Olek Vlad
Methods Training time PSNR ↑ SSIM ↑ LPIPS∗ ↓ PSNR ↑ SSIM ↑ LPIPS∗ ↓

Ours ∼5 minutes 34.95 0.990 13.93 28.88 0.984 18.72
HumanNeRF ∼10 hours 34.08 0.989 14.36 28.49 0.981 17.86

AS ∼10 hours 34.13 0.989 11.41 28.80 0.983 16.75
NB ∼10 hours 33.30 0.987 14.28 28.39 0.982 18.65
AN ∼10 hours 34.18 0.988 15.47 27.90 0.981 19.98

NHP ∼10 hours pre-training, ∼1 hour fine-tuning 33.78 0.988 16.12 28.26 0.983 20.70
PixelNeRF ∼10 hours pre-training, ∼1 hour fine-tuning 27.56 0.964 37.35 23.16 0.956 46.93

Table 7. Full quantitative comparison results on MonoCap.
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